| 1 | // (C) Copyright John Maddock 2006.
|
|---|
| 2 | // Use, modification and distribution are subject to the
|
|---|
| 3 | // Boost Software License, Version 1.0. (See accompanying file
|
|---|
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|---|
| 5 |
|
|---|
| 6 | #ifndef BOOST_MATH_SPECIAL_ERF_HPP
|
|---|
| 7 | #define BOOST_MATH_SPECIAL_ERF_HPP
|
|---|
| 8 |
|
|---|
| 9 | #ifdef _MSC_VER
|
|---|
| 10 | #pragma once
|
|---|
| 11 | #endif
|
|---|
| 12 |
|
|---|
| 13 | #include <boost/math/special_functions/math_fwd.hpp>
|
|---|
| 14 | #include <boost/math/tools/config.hpp>
|
|---|
| 15 | #include <boost/math/special_functions/gamma.hpp>
|
|---|
| 16 | #include <boost/math/tools/roots.hpp>
|
|---|
| 17 | #include <boost/math/policies/error_handling.hpp>
|
|---|
| 18 | #include <boost/math/tools/big_constant.hpp>
|
|---|
| 19 |
|
|---|
| 20 | namespace boost{ namespace math{
|
|---|
| 21 |
|
|---|
| 22 | namespace detail
|
|---|
| 23 | {
|
|---|
| 24 |
|
|---|
| 25 | //
|
|---|
| 26 | // Asymptotic series for large z:
|
|---|
| 27 | //
|
|---|
| 28 | template <class T>
|
|---|
| 29 | struct erf_asympt_series_t
|
|---|
| 30 | {
|
|---|
| 31 | erf_asympt_series_t(T z) : xx(2 * -z * z), tk(1)
|
|---|
| 32 | {
|
|---|
| 33 | BOOST_MATH_STD_USING
|
|---|
| 34 | result = -exp(-z * z) / sqrt(boost::math::constants::pi<T>());
|
|---|
| 35 | result /= z;
|
|---|
| 36 | }
|
|---|
| 37 |
|
|---|
| 38 | typedef T result_type;
|
|---|
| 39 |
|
|---|
| 40 | T operator()()
|
|---|
| 41 | {
|
|---|
| 42 | BOOST_MATH_STD_USING
|
|---|
| 43 | T r = result;
|
|---|
| 44 | result *= tk / xx;
|
|---|
| 45 | tk += 2;
|
|---|
| 46 | if( fabs(r) < fabs(result))
|
|---|
| 47 | result = 0;
|
|---|
| 48 | return r;
|
|---|
| 49 | }
|
|---|
| 50 | private:
|
|---|
| 51 | T result;
|
|---|
| 52 | T xx;
|
|---|
| 53 | int tk;
|
|---|
| 54 | };
|
|---|
| 55 | //
|
|---|
| 56 | // How large z has to be in order to ensure that the series converges:
|
|---|
| 57 | //
|
|---|
| 58 | template <class T>
|
|---|
| 59 | inline float erf_asymptotic_limit_N(const T&)
|
|---|
| 60 | {
|
|---|
| 61 | return (std::numeric_limits<float>::max)();
|
|---|
| 62 | }
|
|---|
| 63 | inline float erf_asymptotic_limit_N(const mpl::int_<24>&)
|
|---|
| 64 | {
|
|---|
| 65 | return 2.8F;
|
|---|
| 66 | }
|
|---|
| 67 | inline float erf_asymptotic_limit_N(const mpl::int_<53>&)
|
|---|
| 68 | {
|
|---|
| 69 | return 4.3F;
|
|---|
| 70 | }
|
|---|
| 71 | inline float erf_asymptotic_limit_N(const mpl::int_<64>&)
|
|---|
| 72 | {
|
|---|
| 73 | return 4.8F;
|
|---|
| 74 | }
|
|---|
| 75 | inline float erf_asymptotic_limit_N(const mpl::int_<106>&)
|
|---|
| 76 | {
|
|---|
| 77 | return 6.5F;
|
|---|
| 78 | }
|
|---|
| 79 | inline float erf_asymptotic_limit_N(const mpl::int_<113>&)
|
|---|
| 80 | {
|
|---|
| 81 | return 6.8F;
|
|---|
| 82 | }
|
|---|
| 83 |
|
|---|
| 84 | template <class T, class Policy>
|
|---|
| 85 | inline T erf_asymptotic_limit()
|
|---|
| 86 | {
|
|---|
| 87 | typedef typename policies::precision<T, Policy>::type precision_type;
|
|---|
| 88 | typedef typename mpl::if_<
|
|---|
| 89 | mpl::less_equal<precision_type, mpl::int_<24> >,
|
|---|
| 90 | typename mpl::if_<
|
|---|
| 91 | mpl::less_equal<precision_type, mpl::int_<0> >,
|
|---|
| 92 | mpl::int_<0>,
|
|---|
| 93 | mpl::int_<24>
|
|---|
| 94 | >::type,
|
|---|
| 95 | typename mpl::if_<
|
|---|
| 96 | mpl::less_equal<precision_type, mpl::int_<53> >,
|
|---|
| 97 | mpl::int_<53>,
|
|---|
| 98 | typename mpl::if_<
|
|---|
| 99 | mpl::less_equal<precision_type, mpl::int_<64> >,
|
|---|
| 100 | mpl::int_<64>,
|
|---|
| 101 | typename mpl::if_<
|
|---|
| 102 | mpl::less_equal<precision_type, mpl::int_<106> >,
|
|---|
| 103 | mpl::int_<106>,
|
|---|
| 104 | typename mpl::if_<
|
|---|
| 105 | mpl::less_equal<precision_type, mpl::int_<113> >,
|
|---|
| 106 | mpl::int_<113>,
|
|---|
| 107 | mpl::int_<0>
|
|---|
| 108 | >::type
|
|---|
| 109 | >::type
|
|---|
| 110 | >::type
|
|---|
| 111 | >::type
|
|---|
| 112 | >::type tag_type;
|
|---|
| 113 | return erf_asymptotic_limit_N(tag_type());
|
|---|
| 114 | }
|
|---|
| 115 |
|
|---|
| 116 | template <class T, class Policy, class Tag>
|
|---|
| 117 | T erf_imp(T z, bool invert, const Policy& pol, const Tag& t)
|
|---|
| 118 | {
|
|---|
| 119 | BOOST_MATH_STD_USING
|
|---|
| 120 |
|
|---|
| 121 | BOOST_MATH_INSTRUMENT_CODE("Generic erf_imp called");
|
|---|
| 122 |
|
|---|
| 123 | if(z < 0)
|
|---|
| 124 | {
|
|---|
| 125 | if(!invert)
|
|---|
| 126 | return -erf_imp(T(-z), invert, pol, t);
|
|---|
| 127 | else
|
|---|
| 128 | return 1 + erf_imp(T(-z), false, pol, t);
|
|---|
| 129 | }
|
|---|
| 130 |
|
|---|
| 131 | T result;
|
|---|
| 132 |
|
|---|
| 133 | if(!invert && (z > detail::erf_asymptotic_limit<T, Policy>()))
|
|---|
| 134 | {
|
|---|
| 135 | detail::erf_asympt_series_t<T> s(z);
|
|---|
| 136 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
|
|---|
| 137 | result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, 1);
|
|---|
| 138 | policies::check_series_iterations<T>("boost::math::erf<%1%>(%1%, %1%)", max_iter, pol);
|
|---|
| 139 | }
|
|---|
| 140 | else
|
|---|
| 141 | {
|
|---|
| 142 | T x = z * z;
|
|---|
| 143 | if(x < 0.6)
|
|---|
| 144 | {
|
|---|
| 145 | // Compute P:
|
|---|
| 146 | result = z * exp(-x);
|
|---|
| 147 | result /= sqrt(boost::math::constants::pi<T>());
|
|---|
| 148 | if(result != 0)
|
|---|
| 149 | result *= 2 * detail::lower_gamma_series(T(0.5f), x, pol);
|
|---|
| 150 | }
|
|---|
| 151 | else if(x < 1.1f)
|
|---|
| 152 | {
|
|---|
| 153 | // Compute Q:
|
|---|
| 154 | invert = !invert;
|
|---|
| 155 | result = tgamma_small_upper_part(T(0.5f), x, pol);
|
|---|
| 156 | result /= sqrt(boost::math::constants::pi<T>());
|
|---|
| 157 | }
|
|---|
| 158 | else
|
|---|
| 159 | {
|
|---|
| 160 | // Compute Q:
|
|---|
| 161 | invert = !invert;
|
|---|
| 162 | result = z * exp(-x);
|
|---|
| 163 | result /= sqrt(boost::math::constants::pi<T>());
|
|---|
| 164 | result *= upper_gamma_fraction(T(0.5f), x, policies::get_epsilon<T, Policy>());
|
|---|
| 165 | }
|
|---|
| 166 | }
|
|---|
| 167 | if(invert)
|
|---|
| 168 | result = 1 - result;
|
|---|
| 169 | return result;
|
|---|
| 170 | }
|
|---|
| 171 |
|
|---|
| 172 | template <class T, class Policy>
|
|---|
| 173 | T erf_imp(T z, bool invert, const Policy& pol, const mpl::int_<53>& t)
|
|---|
| 174 | {
|
|---|
| 175 | BOOST_MATH_STD_USING
|
|---|
| 176 |
|
|---|
| 177 | BOOST_MATH_INSTRUMENT_CODE("53-bit precision erf_imp called");
|
|---|
| 178 |
|
|---|
| 179 | if(z < 0)
|
|---|
| 180 | {
|
|---|
| 181 | if(!invert)
|
|---|
| 182 | return -erf_imp(T(-z), invert, pol, t);
|
|---|
| 183 | else if(z < -0.5)
|
|---|
| 184 | return 2 - erf_imp(T(-z), invert, pol, t);
|
|---|
| 185 | else
|
|---|
| 186 | return 1 + erf_imp(T(-z), false, pol, t);
|
|---|
| 187 | }
|
|---|
| 188 |
|
|---|
| 189 | T result;
|
|---|
| 190 |
|
|---|
| 191 | //
|
|---|
| 192 | // Big bunch of selection statements now to pick
|
|---|
| 193 | // which implementation to use,
|
|---|
| 194 | // try to put most likely options first:
|
|---|
| 195 | //
|
|---|
| 196 | if(z < 0.5)
|
|---|
| 197 | {
|
|---|
| 198 | //
|
|---|
| 199 | // We're going to calculate erf:
|
|---|
| 200 | //
|
|---|
| 201 | if(z < 1e-10)
|
|---|
| 202 | {
|
|---|
| 203 | if(z == 0)
|
|---|
| 204 | {
|
|---|
| 205 | result = T(0);
|
|---|
| 206 | }
|
|---|
| 207 | else
|
|---|
| 208 | {
|
|---|
| 209 | static const T c = BOOST_MATH_BIG_CONSTANT(T, 53, 0.003379167095512573896158903121545171688);
|
|---|
| 210 | result = static_cast<T>(z * 1.125f + z * c);
|
|---|
| 211 | }
|
|---|
| 212 | }
|
|---|
| 213 | else
|
|---|
| 214 | {
|
|---|
| 215 | // Maximum Deviation Found: 1.561e-17
|
|---|
| 216 | // Expected Error Term: 1.561e-17
|
|---|
| 217 | // Maximum Relative Change in Control Points: 1.155e-04
|
|---|
| 218 | // Max Error found at double precision = 2.961182e-17
|
|---|
| 219 |
|
|---|
| 220 | static const T Y = 1.044948577880859375f;
|
|---|
| 221 | static const T P[] = {
|
|---|
| 222 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0834305892146531832907),
|
|---|
| 223 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.338165134459360935041),
|
|---|
| 224 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.0509990735146777432841),
|
|---|
| 225 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.00772758345802133288487),
|
|---|
| 226 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.000322780120964605683831),
|
|---|
| 227 | };
|
|---|
| 228 | static const T Q[] = {
|
|---|
| 229 | 1L,
|
|---|
| 230 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.455004033050794024546),
|
|---|
| 231 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0875222600142252549554),
|
|---|
| 232 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00858571925074406212772),
|
|---|
| 233 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.000370900071787748000569),
|
|---|
| 234 | };
|
|---|
| 235 | T zz = z * z;
|
|---|
| 236 | result = z * (Y + tools::evaluate_polynomial(P, zz) / tools::evaluate_polynomial(Q, zz));
|
|---|
| 237 | }
|
|---|
| 238 | }
|
|---|
| 239 | else if(invert ? (z < 28) : (z < 5.8f))
|
|---|
| 240 | {
|
|---|
| 241 | //
|
|---|
| 242 | // We'll be calculating erfc:
|
|---|
| 243 | //
|
|---|
| 244 | invert = !invert;
|
|---|
| 245 | if(z < 1.5f)
|
|---|
| 246 | {
|
|---|
| 247 | // Maximum Deviation Found: 3.702e-17
|
|---|
| 248 | // Expected Error Term: 3.702e-17
|
|---|
| 249 | // Maximum Relative Change in Control Points: 2.845e-04
|
|---|
| 250 | // Max Error found at double precision = 4.841816e-17
|
|---|
| 251 | static const T Y = 0.405935764312744140625f;
|
|---|
| 252 | static const T P[] = {
|
|---|
| 253 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.098090592216281240205),
|
|---|
| 254 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.178114665841120341155),
|
|---|
| 255 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.191003695796775433986),
|
|---|
| 256 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0888900368967884466578),
|
|---|
| 257 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0195049001251218801359),
|
|---|
| 258 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00180424538297014223957),
|
|---|
| 259 | };
|
|---|
| 260 | static const T Q[] = {
|
|---|
| 261 | 1L,
|
|---|
| 262 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.84759070983002217845),
|
|---|
| 263 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.42628004845511324508),
|
|---|
| 264 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.578052804889902404909),
|
|---|
| 265 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.12385097467900864233),
|
|---|
| 266 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0113385233577001411017),
|
|---|
| 267 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.337511472483094676155e-5),
|
|---|
| 268 | };
|
|---|
| 269 | BOOST_MATH_INSTRUMENT_VARIABLE(Y);
|
|---|
| 270 | BOOST_MATH_INSTRUMENT_VARIABLE(P[0]);
|
|---|
| 271 | BOOST_MATH_INSTRUMENT_VARIABLE(Q[0]);
|
|---|
| 272 | BOOST_MATH_INSTRUMENT_VARIABLE(z);
|
|---|
| 273 | result = Y + tools::evaluate_polynomial(P, T(z - 0.5)) / tools::evaluate_polynomial(Q, T(z - 0.5));
|
|---|
| 274 | BOOST_MATH_INSTRUMENT_VARIABLE(result);
|
|---|
| 275 | result *= exp(-z * z) / z;
|
|---|
| 276 | BOOST_MATH_INSTRUMENT_VARIABLE(result);
|
|---|
| 277 | }
|
|---|
| 278 | else if(z < 2.5f)
|
|---|
| 279 | {
|
|---|
| 280 | // Max Error found at double precision = 6.599585e-18
|
|---|
| 281 | // Maximum Deviation Found: 3.909e-18
|
|---|
| 282 | // Expected Error Term: 3.909e-18
|
|---|
| 283 | // Maximum Relative Change in Control Points: 9.886e-05
|
|---|
| 284 | static const T Y = 0.50672817230224609375f;
|
|---|
| 285 | static const T P[] = {
|
|---|
| 286 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.0243500476207698441272),
|
|---|
| 287 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0386540375035707201728),
|
|---|
| 288 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.04394818964209516296),
|
|---|
| 289 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175679436311802092299),
|
|---|
| 290 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00323962406290842133584),
|
|---|
| 291 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.000235839115596880717416),
|
|---|
| 292 | };
|
|---|
| 293 | static const T Q[] = {
|
|---|
| 294 | BOOST_MATH_BIG_CONSTANT(T, 53, 1),
|
|---|
| 295 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.53991494948552447182),
|
|---|
| 296 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.982403709157920235114),
|
|---|
| 297 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.325732924782444448493),
|
|---|
| 298 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0563921837420478160373),
|
|---|
| 299 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00410369723978904575884),
|
|---|
| 300 | };
|
|---|
| 301 | result = Y + tools::evaluate_polynomial(P, T(z - 1.5)) / tools::evaluate_polynomial(Q, T(z - 1.5));
|
|---|
| 302 | result *= exp(-z * z) / z;
|
|---|
| 303 | }
|
|---|
| 304 | else if(z < 4.5f)
|
|---|
| 305 | {
|
|---|
| 306 | // Maximum Deviation Found: 1.512e-17
|
|---|
| 307 | // Expected Error Term: 1.512e-17
|
|---|
| 308 | // Maximum Relative Change in Control Points: 2.222e-04
|
|---|
| 309 | // Max Error found at double precision = 2.062515e-17
|
|---|
| 310 | static const T Y = 0.5405750274658203125f;
|
|---|
| 311 | static const T P[] = {
|
|---|
| 312 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00295276716530971662634),
|
|---|
| 313 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0137384425896355332126),
|
|---|
| 314 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00840807615555585383007),
|
|---|
| 315 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00212825620914618649141),
|
|---|
| 316 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.000250269961544794627958),
|
|---|
| 317 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.113212406648847561139e-4),
|
|---|
| 318 | };
|
|---|
| 319 | static const T Q[] = {
|
|---|
| 320 | BOOST_MATH_BIG_CONSTANT(T, 53, 1),
|
|---|
| 321 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.04217814166938418171),
|
|---|
| 322 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.442597659481563127003),
|
|---|
| 323 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0958492726301061423444),
|
|---|
| 324 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0105982906484876531489),
|
|---|
| 325 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.000479411269521714493907),
|
|---|
| 326 | };
|
|---|
| 327 | result = Y + tools::evaluate_polynomial(P, T(z - 3.5)) / tools::evaluate_polynomial(Q, T(z - 3.5));
|
|---|
| 328 | result *= exp(-z * z) / z;
|
|---|
| 329 | }
|
|---|
| 330 | else
|
|---|
| 331 | {
|
|---|
| 332 | // Max Error found at double precision = 2.997958e-17
|
|---|
| 333 | // Maximum Deviation Found: 2.860e-17
|
|---|
| 334 | // Expected Error Term: 2.859e-17
|
|---|
| 335 | // Maximum Relative Change in Control Points: 1.357e-05
|
|---|
| 336 | static const T Y = 0.5579090118408203125f;
|
|---|
| 337 | static const T P[] = {
|
|---|
| 338 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00628057170626964891937),
|
|---|
| 339 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175389834052493308818),
|
|---|
| 340 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.212652252872804219852),
|
|---|
| 341 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.687717681153649930619),
|
|---|
| 342 | BOOST_MATH_BIG_CONSTANT(T, 53, -2.5518551727311523996),
|
|---|
| 343 | BOOST_MATH_BIG_CONSTANT(T, 53, -3.22729451764143718517),
|
|---|
| 344 | BOOST_MATH_BIG_CONSTANT(T, 53, -2.8175401114513378771),
|
|---|
| 345 | };
|
|---|
| 346 | static const T Q[] = {
|
|---|
| 347 | BOOST_MATH_BIG_CONSTANT(T, 53, 1),
|
|---|
| 348 | BOOST_MATH_BIG_CONSTANT(T, 53, 2.79257750980575282228),
|
|---|
| 349 | BOOST_MATH_BIG_CONSTANT(T, 53, 11.0567237927800161565),
|
|---|
| 350 | BOOST_MATH_BIG_CONSTANT(T, 53, 15.930646027911794143),
|
|---|
| 351 | BOOST_MATH_BIG_CONSTANT(T, 53, 22.9367376522880577224),
|
|---|
| 352 | BOOST_MATH_BIG_CONSTANT(T, 53, 13.5064170191802889145),
|
|---|
| 353 | BOOST_MATH_BIG_CONSTANT(T, 53, 5.48409182238641741584),
|
|---|
| 354 | };
|
|---|
| 355 | result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));
|
|---|
| 356 | result *= exp(-z * z) / z;
|
|---|
| 357 | }
|
|---|
| 358 | }
|
|---|
| 359 | else
|
|---|
| 360 | {
|
|---|
| 361 | //
|
|---|
| 362 | // Any value of z larger than 28 will underflow to zero:
|
|---|
| 363 | //
|
|---|
| 364 | result = 0;
|
|---|
| 365 | invert = !invert;
|
|---|
| 366 | }
|
|---|
| 367 |
|
|---|
| 368 | if(invert)
|
|---|
| 369 | {
|
|---|
| 370 | result = 1 - result;
|
|---|
| 371 | }
|
|---|
| 372 |
|
|---|
| 373 | return result;
|
|---|
| 374 | } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const mpl::int_<53>& t)
|
|---|
| 375 |
|
|---|
| 376 |
|
|---|
| 377 | template <class T, class Policy>
|
|---|
| 378 | T erf_imp(T z, bool invert, const Policy& pol, const mpl::int_<64>& t)
|
|---|
| 379 | {
|
|---|
| 380 | BOOST_MATH_STD_USING
|
|---|
| 381 |
|
|---|
| 382 | BOOST_MATH_INSTRUMENT_CODE("64-bit precision erf_imp called");
|
|---|
| 383 |
|
|---|
| 384 | if(z < 0)
|
|---|
| 385 | {
|
|---|
| 386 | if(!invert)
|
|---|
| 387 | return -erf_imp(T(-z), invert, pol, t);
|
|---|
| 388 | else if(z < -0.5)
|
|---|
| 389 | return 2 - erf_imp(T(-z), invert, pol, t);
|
|---|
| 390 | else
|
|---|
| 391 | return 1 + erf_imp(T(-z), false, pol, t);
|
|---|
| 392 | }
|
|---|
| 393 |
|
|---|
| 394 | T result;
|
|---|
| 395 |
|
|---|
| 396 | //
|
|---|
| 397 | // Big bunch of selection statements now to pick which
|
|---|
| 398 | // implementation to use, try to put most likely options
|
|---|
| 399 | // first:
|
|---|
| 400 | //
|
|---|
| 401 | if(z < 0.5)
|
|---|
| 402 | {
|
|---|
| 403 | //
|
|---|
| 404 | // We're going to calculate erf:
|
|---|
| 405 | //
|
|---|
| 406 | if(z == 0)
|
|---|
| 407 | {
|
|---|
| 408 | result = 0;
|
|---|
| 409 | }
|
|---|
| 410 | else if(z < 1e-10)
|
|---|
| 411 | {
|
|---|
| 412 | static const T c = BOOST_MATH_BIG_CONSTANT(T, 64, 0.003379167095512573896158903121545171688);
|
|---|
| 413 | result = z * 1.125 + z * c;
|
|---|
| 414 | }
|
|---|
| 415 | else
|
|---|
| 416 | {
|
|---|
| 417 | // Max Error found at long double precision = 1.623299e-20
|
|---|
| 418 | // Maximum Deviation Found: 4.326e-22
|
|---|
| 419 | // Expected Error Term: -4.326e-22
|
|---|
| 420 | // Maximum Relative Change in Control Points: 1.474e-04
|
|---|
| 421 | static const T Y = 1.044948577880859375f;
|
|---|
| 422 | static const T P[] = {
|
|---|
| 423 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0834305892146531988966),
|
|---|
| 424 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.338097283075565413695),
|
|---|
| 425 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0509602734406067204596),
|
|---|
| 426 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00904906346158537794396),
|
|---|
| 427 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000489468651464798669181),
|
|---|
| 428 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.200305626366151877759e-4),
|
|---|
| 429 | };
|
|---|
| 430 | static const T Q[] = {
|
|---|
| 431 | BOOST_MATH_BIG_CONSTANT(T, 64, 1),
|
|---|
| 432 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.455817300515875172439),
|
|---|
| 433 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0916537354356241792007),
|
|---|
| 434 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0102722652675910031202),
|
|---|
| 435 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000650511752687851548735),
|
|---|
| 436 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.189532519105655496778e-4),
|
|---|
| 437 | };
|
|---|
| 438 | result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z)));
|
|---|
| 439 | }
|
|---|
| 440 | }
|
|---|
| 441 | else if(invert ? (z < 110) : (z < 6.4f))
|
|---|
| 442 | {
|
|---|
| 443 | //
|
|---|
| 444 | // We'll be calculating erfc:
|
|---|
| 445 | //
|
|---|
| 446 | invert = !invert;
|
|---|
| 447 | if(z < 1.5)
|
|---|
| 448 | {
|
|---|
| 449 | // Max Error found at long double precision = 3.239590e-20
|
|---|
| 450 | // Maximum Deviation Found: 2.241e-20
|
|---|
| 451 | // Expected Error Term: -2.241e-20
|
|---|
| 452 | // Maximum Relative Change in Control Points: 5.110e-03
|
|---|
| 453 | static const T Y = 0.405935764312744140625f;
|
|---|
| 454 | static const T P[] = {
|
|---|
| 455 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0980905922162812031672),
|
|---|
| 456 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.159989089922969141329),
|
|---|
| 457 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.222359821619935712378),
|
|---|
| 458 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.127303921703577362312),
|
|---|
| 459 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0384057530342762400273),
|
|---|
| 460 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00628431160851156719325),
|
|---|
| 461 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000441266654514391746428),
|
|---|
| 462 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.266689068336295642561e-7),
|
|---|
| 463 | };
|
|---|
| 464 | static const T Q[] = {
|
|---|
| 465 | BOOST_MATH_BIG_CONSTANT(T, 64, 1),
|
|---|
| 466 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.03237474985469469291),
|
|---|
| 467 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.78355454954969405222),
|
|---|
| 468 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.867940326293760578231),
|
|---|
| 469 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.248025606990021698392),
|
|---|
| 470 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0396649631833002269861),
|
|---|
| 471 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00279220237309449026796),
|
|---|
| 472 | };
|
|---|
| 473 | result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f));
|
|---|
| 474 | result *= exp(-z * z) / z;
|
|---|
| 475 | }
|
|---|
| 476 | else if(z < 2.5)
|
|---|
| 477 | {
|
|---|
| 478 | // Max Error found at long double precision = 3.686211e-21
|
|---|
| 479 | // Maximum Deviation Found: 1.495e-21
|
|---|
| 480 | // Expected Error Term: -1.494e-21
|
|---|
| 481 | // Maximum Relative Change in Control Points: 1.793e-04
|
|---|
| 482 | static const T Y = 0.50672817230224609375f;
|
|---|
| 483 | static const T P[] = {
|
|---|
| 484 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.024350047620769840217),
|
|---|
| 485 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0343522687935671451309),
|
|---|
| 486 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0505420824305544949541),
|
|---|
| 487 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0257479325917757388209),
|
|---|
| 488 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00669349844190354356118),
|
|---|
| 489 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00090807914416099524444),
|
|---|
| 490 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.515917266698050027934e-4),
|
|---|
| 491 | };
|
|---|
| 492 | static const T Q[] = {
|
|---|
| 493 | BOOST_MATH_BIG_CONSTANT(T, 64, 1),
|
|---|
| 494 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.71657861671930336344),
|
|---|
| 495 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.26409634824280366218),
|
|---|
| 496 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.512371437838969015941),
|
|---|
| 497 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.120902623051120950935),
|
|---|
| 498 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0158027197831887485261),
|
|---|
| 499 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000897871370778031611439),
|
|---|
| 500 | };
|
|---|
| 501 | result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f));
|
|---|
| 502 | result *= exp(-z * z) / z;
|
|---|
| 503 | }
|
|---|
| 504 | else if(z < 4.5)
|
|---|
| 505 | {
|
|---|
| 506 | // Maximum Deviation Found: 1.107e-20
|
|---|
| 507 | // Expected Error Term: -1.106e-20
|
|---|
| 508 | // Maximum Relative Change in Control Points: 1.709e-04
|
|---|
| 509 | // Max Error found at long double precision = 1.446908e-20
|
|---|
| 510 | static const T Y = 0.5405750274658203125f;
|
|---|
| 511 | static const T P[] = {
|
|---|
| 512 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0029527671653097284033),
|
|---|
| 513 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0141853245895495604051),
|
|---|
| 514 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0104959584626432293901),
|
|---|
| 515 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00343963795976100077626),
|
|---|
| 516 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00059065441194877637899),
|
|---|
| 517 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.523435380636174008685e-4),
|
|---|
| 518 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.189896043050331257262e-5),
|
|---|
| 519 | };
|
|---|
| 520 | static const T Q[] = {
|
|---|
| 521 | BOOST_MATH_BIG_CONSTANT(T, 64, 1),
|
|---|
| 522 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.19352160185285642574),
|
|---|
| 523 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.603256964363454392857),
|
|---|
| 524 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.165411142458540585835),
|
|---|
| 525 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0259729870946203166468),
|
|---|
| 526 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00221657568292893699158),
|
|---|
| 527 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.804149464190309799804e-4),
|
|---|
| 528 | };
|
|---|
| 529 | result = Y + tools::evaluate_polynomial(P, T(z - 3.5f)) / tools::evaluate_polynomial(Q, T(z - 3.5f));
|
|---|
| 530 | result *= exp(-z * z) / z;
|
|---|
| 531 | }
|
|---|
| 532 | else
|
|---|
| 533 | {
|
|---|
| 534 | // Max Error found at long double precision = 7.961166e-21
|
|---|
| 535 | // Maximum Deviation Found: 6.677e-21
|
|---|
| 536 | // Expected Error Term: 6.676e-21
|
|---|
| 537 | // Maximum Relative Change in Control Points: 2.319e-05
|
|---|
| 538 | static const T Y = 0.55825519561767578125f;
|
|---|
| 539 | static const T P[] = {
|
|---|
| 540 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00593438793008050214106),
|
|---|
| 541 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0280666231009089713937),
|
|---|
| 542 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.141597835204583050043),
|
|---|
| 543 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.978088201154300548842),
|
|---|
| 544 | BOOST_MATH_BIG_CONSTANT(T, 64, -5.47351527796012049443),
|
|---|
| 545 | BOOST_MATH_BIG_CONSTANT(T, 64, -13.8677304660245326627),
|
|---|
| 546 | BOOST_MATH_BIG_CONSTANT(T, 64, -27.1274948720539821722),
|
|---|
| 547 | BOOST_MATH_BIG_CONSTANT(T, 64, -29.2545152747009461519),
|
|---|
| 548 | BOOST_MATH_BIG_CONSTANT(T, 64, -16.8865774499799676937),
|
|---|
| 549 | };
|
|---|
| 550 | static const T Q[] = {
|
|---|
| 551 | BOOST_MATH_BIG_CONSTANT(T, 64, 1),
|
|---|
| 552 | BOOST_MATH_BIG_CONSTANT(T, 64, 4.72948911186645394541),
|
|---|
| 553 | BOOST_MATH_BIG_CONSTANT(T, 64, 23.6750543147695749212),
|
|---|
| 554 | BOOST_MATH_BIG_CONSTANT(T, 64, 60.0021517335693186785),
|
|---|
| 555 | BOOST_MATH_BIG_CONSTANT(T, 64, 131.766251645149522868),
|
|---|
| 556 | BOOST_MATH_BIG_CONSTANT(T, 64, 178.167924971283482513),
|
|---|
| 557 | BOOST_MATH_BIG_CONSTANT(T, 64, 182.499390505915222699),
|
|---|
| 558 | BOOST_MATH_BIG_CONSTANT(T, 64, 104.365251479578577989),
|
|---|
| 559 | BOOST_MATH_BIG_CONSTANT(T, 64, 30.8365511891224291717),
|
|---|
| 560 | };
|
|---|
| 561 | result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));
|
|---|
| 562 | result *= exp(-z * z) / z;
|
|---|
| 563 | }
|
|---|
| 564 | }
|
|---|
| 565 | else
|
|---|
| 566 | {
|
|---|
| 567 | //
|
|---|
| 568 | // Any value of z larger than 110 will underflow to zero:
|
|---|
| 569 | //
|
|---|
| 570 | result = 0;
|
|---|
| 571 | invert = !invert;
|
|---|
| 572 | }
|
|---|
| 573 |
|
|---|
| 574 | if(invert)
|
|---|
| 575 | {
|
|---|
| 576 | result = 1 - result;
|
|---|
| 577 | }
|
|---|
| 578 |
|
|---|
| 579 | return result;
|
|---|
| 580 | } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const mpl::int_<64>& t)
|
|---|
| 581 |
|
|---|
| 582 |
|
|---|
| 583 | template <class T, class Policy>
|
|---|
| 584 | T erf_imp(T z, bool invert, const Policy& pol, const mpl::int_<113>& t)
|
|---|
| 585 | {
|
|---|
| 586 | BOOST_MATH_STD_USING
|
|---|
| 587 |
|
|---|
| 588 | BOOST_MATH_INSTRUMENT_CODE("113-bit precision erf_imp called");
|
|---|
| 589 |
|
|---|
| 590 | if(z < 0)
|
|---|
| 591 | {
|
|---|
| 592 | if(!invert)
|
|---|
| 593 | return -erf_imp(T(-z), invert, pol, t);
|
|---|
| 594 | else if(z < -0.5)
|
|---|
| 595 | return 2 - erf_imp(T(-z), invert, pol, t);
|
|---|
| 596 | else
|
|---|
| 597 | return 1 + erf_imp(T(-z), false, pol, t);
|
|---|
| 598 | }
|
|---|
| 599 |
|
|---|
| 600 | T result;
|
|---|
| 601 |
|
|---|
| 602 | //
|
|---|
| 603 | // Big bunch of selection statements now to pick which
|
|---|
| 604 | // implementation to use, try to put most likely options
|
|---|
| 605 | // first:
|
|---|
| 606 | //
|
|---|
| 607 | if(z < 0.5)
|
|---|
| 608 | {
|
|---|
| 609 | //
|
|---|
| 610 | // We're going to calculate erf:
|
|---|
| 611 | //
|
|---|
| 612 | if(z == 0)
|
|---|
| 613 | {
|
|---|
| 614 | result = 0;
|
|---|
| 615 | }
|
|---|
| 616 | else if(z < 1e-20)
|
|---|
| 617 | {
|
|---|
| 618 | static const T c = BOOST_MATH_BIG_CONSTANT(T, 113, 0.003379167095512573896158903121545171688);
|
|---|
| 619 | result = z * 1.125 + z * c;
|
|---|
| 620 | }
|
|---|
| 621 | else
|
|---|
| 622 | {
|
|---|
| 623 | // Max Error found at long double precision = 2.342380e-35
|
|---|
| 624 | // Maximum Deviation Found: 6.124e-36
|
|---|
| 625 | // Expected Error Term: -6.124e-36
|
|---|
| 626 | // Maximum Relative Change in Control Points: 3.492e-10
|
|---|
| 627 | static const T Y = 1.0841522216796875f;
|
|---|
| 628 | static const T P[] = {
|
|---|
| 629 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0442269454158250738961589031215451778),
|
|---|
| 630 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.35549265736002144875335323556961233),
|
|---|
| 631 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0582179564566667896225454670863270393),
|
|---|
| 632 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0112694696904802304229950538453123925),
|
|---|
| 633 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000805730648981801146251825329609079099),
|
|---|
| 634 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.566304966591936566229702842075966273e-4),
|
|---|
| 635 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.169655010425186987820201021510002265e-5),
|
|---|
| 636 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.344448249920445916714548295433198544e-7),
|
|---|
| 637 | };
|
|---|
| 638 | static const T Q[] = {
|
|---|
| 639 | BOOST_MATH_BIG_CONSTANT(T, 113, 1),
|
|---|
| 640 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.466542092785657604666906909196052522),
|
|---|
| 641 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.100005087012526447295176964142107611),
|
|---|
| 642 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0128341535890117646540050072234142603),
|
|---|
| 643 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00107150448466867929159660677016658186),
|
|---|
| 644 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.586168368028999183607733369248338474e-4),
|
|---|
| 645 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.196230608502104324965623171516808796e-5),
|
|---|
| 646 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.313388521582925207734229967907890146e-7),
|
|---|
| 647 | };
|
|---|
| 648 | result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z)));
|
|---|
| 649 | }
|
|---|
| 650 | }
|
|---|
| 651 | else if(invert ? (z < 110) : (z < 8.65f))
|
|---|
| 652 | {
|
|---|
| 653 | //
|
|---|
| 654 | // We'll be calculating erfc:
|
|---|
| 655 | //
|
|---|
| 656 | invert = !invert;
|
|---|
| 657 | if(z < 1)
|
|---|
| 658 | {
|
|---|
| 659 | // Max Error found at long double precision = 3.246278e-35
|
|---|
| 660 | // Maximum Deviation Found: 1.388e-35
|
|---|
| 661 | // Expected Error Term: 1.387e-35
|
|---|
| 662 | // Maximum Relative Change in Control Points: 6.127e-05
|
|---|
| 663 | static const T Y = 0.371877193450927734375f;
|
|---|
| 664 | static const T P[] = {
|
|---|
| 665 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0640320213544647969396032886581290455),
|
|---|
| 666 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.200769874440155895637857443946706731),
|
|---|
| 667 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.378447199873537170666487408805779826),
|
|---|
| 668 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.30521399466465939450398642044975127),
|
|---|
| 669 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.146890026406815277906781824723458196),
|
|---|
| 670 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0464837937749539978247589252732769567),
|
|---|
| 671 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00987895759019540115099100165904822903),
|
|---|
| 672 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00137507575429025512038051025154301132),
|
|---|
| 673 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0001144764551085935580772512359680516),
|
|---|
| 674 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.436544865032836914773944382339900079e-5),
|
|---|
| 675 | };
|
|---|
| 676 | static const T Q[] = {
|
|---|
| 677 | BOOST_MATH_BIG_CONSTANT(T, 113, 1),
|
|---|
| 678 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.47651182872457465043733800302427977),
|
|---|
| 679 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.78706486002517996428836400245547955),
|
|---|
| 680 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.87295924621659627926365005293130693),
|
|---|
| 681 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.829375825174365625428280908787261065),
|
|---|
| 682 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.251334771307848291593780143950311514),
|
|---|
| 683 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0522110268876176186719436765734722473),
|
|---|
| 684 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00718332151250963182233267040106902368),
|
|---|
| 685 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000595279058621482041084986219276392459),
|
|---|
| 686 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.226988669466501655990637599399326874e-4),
|
|---|
| 687 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.270666232259029102353426738909226413e-10),
|
|---|
| 688 | };
|
|---|
| 689 | result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f));
|
|---|
| 690 | result *= exp(-z * z) / z;
|
|---|
| 691 | }
|
|---|
| 692 | else if(z < 1.5)
|
|---|
| 693 | {
|
|---|
| 694 | // Max Error found at long double precision = 2.215785e-35
|
|---|
| 695 | // Maximum Deviation Found: 1.539e-35
|
|---|
| 696 | // Expected Error Term: 1.538e-35
|
|---|
| 697 | // Maximum Relative Change in Control Points: 6.104e-05
|
|---|
| 698 | static const T Y = 0.45658016204833984375f;
|
|---|
| 699 | static const T P[] = {
|
|---|
| 700 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0289965858925328393392496555094848345),
|
|---|
| 701 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0868181194868601184627743162571779226),
|
|---|
| 702 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.169373435121178901746317404936356745),
|
|---|
| 703 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.13350446515949251201104889028133486),
|
|---|
| 704 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0617447837290183627136837688446313313),
|
|---|
| 705 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0185618495228251406703152962489700468),
|
|---|
| 706 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00371949406491883508764162050169531013),
|
|---|
| 707 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000485121708792921297742105775823900772),
|
|---|
| 708 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.376494706741453489892108068231400061e-4),
|
|---|
| 709 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.133166058052466262415271732172490045e-5),
|
|---|
| 710 | };
|
|---|
| 711 | static const T Q[] = {
|
|---|
| 712 | BOOST_MATH_BIG_CONSTANT(T, 113, 1),
|
|---|
| 713 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.32970330146503867261275580968135126),
|
|---|
| 714 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.46325715420422771961250513514928746),
|
|---|
| 715 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.55307882560757679068505047390857842),
|
|---|
| 716 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.644274289865972449441174485441409076),
|
|---|
| 717 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.182609091063258208068606847453955649),
|
|---|
| 718 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0354171651271241474946129665801606795),
|
|---|
| 719 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00454060370165285246451879969534083997),
|
|---|
| 720 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000349871943711566546821198612518656486),
|
|---|
| 721 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.123749319840299552925421880481085392e-4),
|
|---|
| 722 | };
|
|---|
| 723 | result = Y + tools::evaluate_polynomial(P, T(z - 1.0f)) / tools::evaluate_polynomial(Q, T(z - 1.0f));
|
|---|
| 724 | result *= exp(-z * z) / z;
|
|---|
| 725 | }
|
|---|
| 726 | else if(z < 2.25)
|
|---|
| 727 | {
|
|---|
| 728 | // Maximum Deviation Found: 1.418e-35
|
|---|
| 729 | // Expected Error Term: 1.418e-35
|
|---|
| 730 | // Maximum Relative Change in Control Points: 1.316e-04
|
|---|
| 731 | // Max Error found at long double precision = 1.998462e-35
|
|---|
| 732 | static const T Y = 0.50250148773193359375f;
|
|---|
| 733 | static const T P[] = {
|
|---|
| 734 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0201233630504573402185161184151016606),
|
|---|
| 735 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0331864357574860196516686996302305002),
|
|---|
| 736 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0716562720864787193337475444413405461),
|
|---|
| 737 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0545835322082103985114927569724880658),
|
|---|
| 738 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0236692635189696678976549720784989593),
|
|---|
| 739 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00656970902163248872837262539337601845),
|
|---|
| 740 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00120282643299089441390490459256235021),
|
|---|
| 741 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000142123229065182650020762792081622986),
|
|---|
| 742 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.991531438367015135346716277792989347e-5),
|
|---|
| 743 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.312857043762117596999398067153076051e-6),
|
|---|
| 744 | };
|
|---|
| 745 | static const T Q[] = {
|
|---|
| 746 | BOOST_MATH_BIG_CONSTANT(T, 113, 1),
|
|---|
| 747 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.13506082409097783827103424943508554),
|
|---|
| 748 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.06399257267556230937723190496806215),
|
|---|
| 749 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.18678481279932541314830499880691109),
|
|---|
| 750 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.447733186643051752513538142316799562),
|
|---|
| 751 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.11505680005657879437196953047542148),
|
|---|
| 752 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.020163993632192726170219663831914034),
|
|---|
| 753 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00232708971840141388847728782209730585),
|
|---|
| 754 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000160733201627963528519726484608224112),
|
|---|
| 755 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.507158721790721802724402992033269266e-5),
|
|---|
| 756 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.18647774409821470950544212696270639e-12),
|
|---|
| 757 | };
|
|---|
| 758 | result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f));
|
|---|
| 759 | result *= exp(-z * z) / z;
|
|---|
| 760 | }
|
|---|
| 761 | else if (z < 3)
|
|---|
| 762 | {
|
|---|
| 763 | // Maximum Deviation Found: 3.575e-36
|
|---|
| 764 | // Expected Error Term: 3.575e-36
|
|---|
| 765 | // Maximum Relative Change in Control Points: 7.103e-05
|
|---|
| 766 | // Max Error found at long double precision = 5.794737e-36
|
|---|
| 767 | static const T Y = 0.52896785736083984375f;
|
|---|
| 768 | static const T P[] = {
|
|---|
| 769 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00902152521745813634562524098263360074),
|
|---|
| 770 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0145207142776691539346923710537580927),
|
|---|
| 771 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0301681239582193983824211995978678571),
|
|---|
| 772 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0215548540823305814379020678660434461),
|
|---|
| 773 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00864683476267958365678294164340749949),
|
|---|
| 774 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00219693096885585491739823283511049902),
|
|---|
| 775 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000364961639163319762492184502159894371),
|
|---|
| 776 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.388174251026723752769264051548703059e-4),
|
|---|
| 777 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.241918026931789436000532513553594321e-5),
|
|---|
| 778 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.676586625472423508158937481943649258e-7),
|
|---|
| 779 | };
|
|---|
| 780 | static const T Q[] = {
|
|---|
| 781 | BOOST_MATH_BIG_CONSTANT(T, 113, 1),
|
|---|
| 782 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.93669171363907292305550231764920001),
|
|---|
| 783 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.69468476144051356810672506101377494),
|
|---|
| 784 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.880023580986436640372794392579985511),
|
|---|
| 785 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.299099106711315090710836273697708402),
|
|---|
| 786 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0690593962363545715997445583603382337),
|
|---|
| 787 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0108427016361318921960863149875360222),
|
|---|
| 788 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00111747247208044534520499324234317695),
|
|---|
| 789 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.686843205749767250666787987163701209e-4),
|
|---|
| 790 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.192093541425429248675532015101904262e-5),
|
|---|
| 791 | };
|
|---|
| 792 | result = Y + tools::evaluate_polynomial(P, T(z - 2.25f)) / tools::evaluate_polynomial(Q, T(z - 2.25f));
|
|---|
| 793 | result *= exp(-z * z) / z;
|
|---|
| 794 | }
|
|---|
| 795 | else if(z < 3.5)
|
|---|
| 796 | {
|
|---|
| 797 | // Maximum Deviation Found: 8.126e-37
|
|---|
| 798 | // Expected Error Term: -8.126e-37
|
|---|
| 799 | // Maximum Relative Change in Control Points: 1.363e-04
|
|---|
| 800 | // Max Error found at long double precision = 1.747062e-36
|
|---|
| 801 | static const T Y = 0.54037380218505859375f;
|
|---|
| 802 | static const T P[] = {
|
|---|
| 803 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0033703486408887424921155540591370375),
|
|---|
| 804 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0104948043110005245215286678898115811),
|
|---|
| 805 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0148530118504000311502310457390417795),
|
|---|
| 806 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00816693029245443090102738825536188916),
|
|---|
| 807 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00249716579989140882491939681805594585),
|
|---|
| 808 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0004655591010047353023978045800916647),
|
|---|
| 809 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.531129557920045295895085236636025323e-4),
|
|---|
| 810 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.343526765122727069515775194111741049e-5),
|
|---|
| 811 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.971120407556888763695313774578711839e-7),
|
|---|
| 812 | };
|
|---|
| 813 | static const T Q[] = {
|
|---|
| 814 | BOOST_MATH_BIG_CONSTANT(T, 113, 1),
|
|---|
| 815 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.59911256167540354915906501335919317),
|
|---|
| 816 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.136006830764025173864831382946934),
|
|---|
| 817 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.468565867990030871678574840738423023),
|
|---|
| 818 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.122821824954470343413956476900662236),
|
|---|
| 819 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0209670914950115943338996513330141633),
|
|---|
| 820 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00227845718243186165620199012883547257),
|
|---|
| 821 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000144243326443913171313947613547085553),
|
|---|
| 822 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.407763415954267700941230249989140046e-5),
|
|---|
| 823 | };
|
|---|
| 824 | result = Y + tools::evaluate_polynomial(P, T(z - 3.0f)) / tools::evaluate_polynomial(Q, T(z - 3.0f));
|
|---|
| 825 | result *= exp(-z * z) / z;
|
|---|
| 826 | }
|
|---|
| 827 | else if(z < 5.5)
|
|---|
| 828 | {
|
|---|
| 829 | // Maximum Deviation Found: 5.804e-36
|
|---|
| 830 | // Expected Error Term: -5.803e-36
|
|---|
| 831 | // Maximum Relative Change in Control Points: 2.475e-05
|
|---|
| 832 | // Max Error found at long double precision = 1.349545e-35
|
|---|
| 833 | static const T Y = 0.55000019073486328125f;
|
|---|
| 834 | static const T P[] = {
|
|---|
| 835 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00118142849742309772151454518093813615),
|
|---|
| 836 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0072201822885703318172366893469382745),
|
|---|
| 837 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0078782276276860110721875733778481505),
|
|---|
| 838 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00418229166204362376187593976656261146),
|
|---|
| 839 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00134198400587769200074194304298642705),
|
|---|
| 840 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000283210387078004063264777611497435572),
|
|---|
| 841 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.405687064094911866569295610914844928e-4),
|
|---|
| 842 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.39348283801568113807887364414008292e-5),
|
|---|
| 843 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.248798540917787001526976889284624449e-6),
|
|---|
| 844 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.929502490223452372919607105387474751e-8),
|
|---|
| 845 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.156161469668275442569286723236274457e-9),
|
|---|
| 846 | };
|
|---|
| 847 | static const T Q[] = {
|
|---|
| 848 | BOOST_MATH_BIG_CONSTANT(T, 113, 1),
|
|---|
| 849 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.52955245103668419479878456656709381),
|
|---|
| 850 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.06263944820093830054635017117417064),
|
|---|
| 851 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.441684612681607364321013134378316463),
|
|---|
| 852 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.121665258426166960049773715928906382),
|
|---|
| 853 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0232134512374747691424978642874321434),
|
|---|
| 854 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00310778180686296328582860464875562636),
|
|---|
| 855 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000288361770756174705123674838640161693),
|
|---|
| 856 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.177529187194133944622193191942300132e-4),
|
|---|
| 857 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.655068544833064069223029299070876623e-6),
|
|---|
| 858 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.11005507545746069573608988651927452e-7),
|
|---|
| 859 | };
|
|---|
| 860 | result = Y + tools::evaluate_polynomial(P, T(z - 4.5f)) / tools::evaluate_polynomial(Q, T(z - 4.5f));
|
|---|
| 861 | result *= exp(-z * z) / z;
|
|---|
| 862 | }
|
|---|
| 863 | else if(z < 7.5)
|
|---|
| 864 | {
|
|---|
| 865 | // Maximum Deviation Found: 1.007e-36
|
|---|
| 866 | // Expected Error Term: 1.007e-36
|
|---|
| 867 | // Maximum Relative Change in Control Points: 1.027e-03
|
|---|
| 868 | // Max Error found at long double precision = 2.646420e-36
|
|---|
| 869 | static const T Y = 0.5574436187744140625f;
|
|---|
| 870 | static const T P[] = {
|
|---|
| 871 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000293236907400849056269309713064107674),
|
|---|
| 872 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00225110719535060642692275221961480162),
|
|---|
| 873 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00190984458121502831421717207849429799),
|
|---|
| 874 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000747757733460111743833929141001680706),
|
|---|
| 875 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000170663175280949889583158597373928096),
|
|---|
| 876 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.246441188958013822253071608197514058e-4),
|
|---|
| 877 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.229818000860544644974205957895688106e-5),
|
|---|
| 878 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.134886977703388748488480980637704864e-6),
|
|---|
| 879 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.454764611880548962757125070106650958e-8),
|
|---|
| 880 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.673002744115866600294723141176820155e-10),
|
|---|
| 881 | };
|
|---|
| 882 | static const T Q[] = {
|
|---|
| 883 | BOOST_MATH_BIG_CONSTANT(T, 113, 1),
|
|---|
| 884 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.12843690320861239631195353379313367),
|
|---|
| 885 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.569900657061622955362493442186537259),
|
|---|
| 886 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.169094404206844928112348730277514273),
|
|---|
| 887 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0324887449084220415058158657252147063),
|
|---|
| 888 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00419252877436825753042680842608219552),
|
|---|
| 889 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00036344133176118603523976748563178578),
|
|---|
| 890 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.204123895931375107397698245752850347e-4),
|
|---|
| 891 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.674128352521481412232785122943508729e-6),
|
|---|
| 892 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.997637501418963696542159244436245077e-8),
|
|---|
| 893 | };
|
|---|
| 894 | result = Y + tools::evaluate_polynomial(P, T(z - 6.5f)) / tools::evaluate_polynomial(Q, T(z - 6.5f));
|
|---|
| 895 | result *= exp(-z * z) / z;
|
|---|
| 896 | }
|
|---|
| 897 | else if(z < 11.5)
|
|---|
| 898 | {
|
|---|
| 899 | // Maximum Deviation Found: 8.380e-36
|
|---|
| 900 | // Expected Error Term: 8.380e-36
|
|---|
| 901 | // Maximum Relative Change in Control Points: 2.632e-06
|
|---|
| 902 | // Max Error found at long double precision = 9.849522e-36
|
|---|
| 903 | static const T Y = 0.56083202362060546875f;
|
|---|
| 904 | static const T P[] = {
|
|---|
| 905 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000282420728751494363613829834891390121),
|
|---|
| 906 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00175387065018002823433704079355125161),
|
|---|
| 907 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0021344978564889819420775336322920375),
|
|---|
| 908 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00124151356560137532655039683963075661),
|
|---|
| 909 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000423600733566948018555157026862139644),
|
|---|
| 910 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.914030340865175237133613697319509698e-4),
|
|---|
| 911 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.126999927156823363353809747017945494e-4),
|
|---|
| 912 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.110610959842869849776179749369376402e-5),
|
|---|
| 913 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.55075079477173482096725348704634529e-7),
|
|---|
| 914 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.119735694018906705225870691331543806e-8),
|
|---|
| 915 | };
|
|---|
| 916 | static const T Q[] = {
|
|---|
| 917 | BOOST_MATH_BIG_CONSTANT(T, 113, 1),
|
|---|
| 918 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.69889613396167354566098060039549882),
|
|---|
| 919 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.28824647372749624464956031163282674),
|
|---|
| 920 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.572297795434934493541628008224078717),
|
|---|
| 921 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.164157697425571712377043857240773164),
|
|---|
| 922 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0315311145224594430281219516531649562),
|
|---|
| 923 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00405588922155632380812945849777127458),
|
|---|
| 924 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000336929033691445666232029762868642417),
|
|---|
| 925 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.164033049810404773469413526427932109e-4),
|
|---|
| 926 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.356615210500531410114914617294694857e-6),
|
|---|
| 927 | };
|
|---|
| 928 | result = Y + tools::evaluate_polynomial(P, T(z / 2 - 4.75f)) / tools::evaluate_polynomial(Q, T(z / 2 - 4.75f));
|
|---|
| 929 | result *= exp(-z * z) / z;
|
|---|
| 930 | }
|
|---|
| 931 | else
|
|---|
| 932 | {
|
|---|
| 933 | // Maximum Deviation Found: 1.132e-35
|
|---|
| 934 | // Expected Error Term: -1.132e-35
|
|---|
| 935 | // Maximum Relative Change in Control Points: 4.674e-04
|
|---|
| 936 | // Max Error found at long double precision = 1.162590e-35
|
|---|
| 937 | static const T Y = 0.5632686614990234375f;
|
|---|
| 938 | static const T P[] = {
|
|---|
| 939 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000920922048732849448079451574171836943),
|
|---|
| 940 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00321439044532288750501700028748922439),
|
|---|
| 941 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.250455263029390118657884864261823431),
|
|---|
| 942 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.906807635364090342031792404764598142),
|
|---|
| 943 | BOOST_MATH_BIG_CONSTANT(T, 113, -8.92233572835991735876688745989985565),
|
|---|
| 944 | BOOST_MATH_BIG_CONSTANT(T, 113, -21.7797433494422564811782116907878495),
|
|---|
| 945 | BOOST_MATH_BIG_CONSTANT(T, 113, -91.1451915251976354349734589601171659),
|
|---|
| 946 | BOOST_MATH_BIG_CONSTANT(T, 113, -144.1279109655993927069052125017673),
|
|---|
| 947 | BOOST_MATH_BIG_CONSTANT(T, 113, -313.845076581796338665519022313775589),
|
|---|
| 948 | BOOST_MATH_BIG_CONSTANT(T, 113, -273.11378811923343424081101235736475),
|
|---|
| 949 | BOOST_MATH_BIG_CONSTANT(T, 113, -271.651566205951067025696102600443452),
|
|---|
| 950 | BOOST_MATH_BIG_CONSTANT(T, 113, -60.0530577077238079968843307523245547),
|
|---|
| 951 | };
|
|---|
| 952 | static const T Q[] = {
|
|---|
| 953 | BOOST_MATH_BIG_CONSTANT(T, 113, 1),
|
|---|
| 954 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.49040448075464744191022350947892036),
|
|---|
| 955 | BOOST_MATH_BIG_CONSTANT(T, 113, 34.3563592467165971295915749548313227),
|
|---|
| 956 | BOOST_MATH_BIG_CONSTANT(T, 113, 84.4993232033879023178285731843850461),
|
|---|
| 957 | BOOST_MATH_BIG_CONSTANT(T, 113, 376.005865281206894120659401340373818),
|
|---|
| 958 | BOOST_MATH_BIG_CONSTANT(T, 113, 629.95369438888946233003926191755125),
|
|---|
| 959 | BOOST_MATH_BIG_CONSTANT(T, 113, 1568.35771983533158591604513304269098),
|
|---|
| 960 | BOOST_MATH_BIG_CONSTANT(T, 113, 1646.02452040831961063640827116581021),
|
|---|
| 961 | BOOST_MATH_BIG_CONSTANT(T, 113, 2299.96860633240298708910425594484895),
|
|---|
| 962 | BOOST_MATH_BIG_CONSTANT(T, 113, 1222.73204392037452750381340219906374),
|
|---|
| 963 | BOOST_MATH_BIG_CONSTANT(T, 113, 799.359797306084372350264298361110448),
|
|---|
| 964 | BOOST_MATH_BIG_CONSTANT(T, 113, 72.7415265778588087243442792401576737),
|
|---|
| 965 | };
|
|---|
| 966 | result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));
|
|---|
| 967 | result *= exp(-z * z) / z;
|
|---|
| 968 | }
|
|---|
| 969 | }
|
|---|
| 970 | else
|
|---|
| 971 | {
|
|---|
| 972 | //
|
|---|
| 973 | // Any value of z larger than 110 will underflow to zero:
|
|---|
| 974 | //
|
|---|
| 975 | result = 0;
|
|---|
| 976 | invert = !invert;
|
|---|
| 977 | }
|
|---|
| 978 |
|
|---|
| 979 | if(invert)
|
|---|
| 980 | {
|
|---|
| 981 | result = 1 - result;
|
|---|
| 982 | }
|
|---|
| 983 |
|
|---|
| 984 | return result;
|
|---|
| 985 | } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const mpl::int_<113>& t)
|
|---|
| 986 |
|
|---|
| 987 | template <class T, class Policy, class tag>
|
|---|
| 988 | struct erf_initializer
|
|---|
| 989 | {
|
|---|
| 990 | struct init
|
|---|
| 991 | {
|
|---|
| 992 | init()
|
|---|
| 993 | {
|
|---|
| 994 | do_init(tag());
|
|---|
| 995 | }
|
|---|
| 996 | static void do_init(const mpl::int_<0>&){}
|
|---|
| 997 | static void do_init(const mpl::int_<53>&)
|
|---|
| 998 | {
|
|---|
| 999 | boost::math::erf(static_cast<T>(1e-12), Policy());
|
|---|
| 1000 | boost::math::erf(static_cast<T>(0.25), Policy());
|
|---|
| 1001 | boost::math::erf(static_cast<T>(1.25), Policy());
|
|---|
| 1002 | boost::math::erf(static_cast<T>(2.25), Policy());
|
|---|
| 1003 | boost::math::erf(static_cast<T>(4.25), Policy());
|
|---|
| 1004 | boost::math::erf(static_cast<T>(5.25), Policy());
|
|---|
| 1005 | }
|
|---|
| 1006 | static void do_init(const mpl::int_<64>&)
|
|---|
| 1007 | {
|
|---|
| 1008 | boost::math::erf(static_cast<T>(1e-12), Policy());
|
|---|
| 1009 | boost::math::erf(static_cast<T>(0.25), Policy());
|
|---|
| 1010 | boost::math::erf(static_cast<T>(1.25), Policy());
|
|---|
| 1011 | boost::math::erf(static_cast<T>(2.25), Policy());
|
|---|
| 1012 | boost::math::erf(static_cast<T>(4.25), Policy());
|
|---|
| 1013 | boost::math::erf(static_cast<T>(5.25), Policy());
|
|---|
| 1014 | }
|
|---|
| 1015 | static void do_init(const mpl::int_<113>&)
|
|---|
| 1016 | {
|
|---|
| 1017 | boost::math::erf(static_cast<T>(1e-22), Policy());
|
|---|
| 1018 | boost::math::erf(static_cast<T>(0.25), Policy());
|
|---|
| 1019 | boost::math::erf(static_cast<T>(1.25), Policy());
|
|---|
| 1020 | boost::math::erf(static_cast<T>(2.125), Policy());
|
|---|
| 1021 | boost::math::erf(static_cast<T>(2.75), Policy());
|
|---|
| 1022 | boost::math::erf(static_cast<T>(3.25), Policy());
|
|---|
| 1023 | boost::math::erf(static_cast<T>(5.25), Policy());
|
|---|
| 1024 | boost::math::erf(static_cast<T>(7.25), Policy());
|
|---|
| 1025 | boost::math::erf(static_cast<T>(11.25), Policy());
|
|---|
| 1026 | boost::math::erf(static_cast<T>(12.5), Policy());
|
|---|
| 1027 | }
|
|---|
| 1028 | void force_instantiate()const{}
|
|---|
| 1029 | };
|
|---|
| 1030 | static const init initializer;
|
|---|
| 1031 | static void force_instantiate()
|
|---|
| 1032 | {
|
|---|
| 1033 | initializer.force_instantiate();
|
|---|
| 1034 | }
|
|---|
| 1035 | };
|
|---|
| 1036 |
|
|---|
| 1037 | template <class T, class Policy, class tag>
|
|---|
| 1038 | const typename erf_initializer<T, Policy, tag>::init erf_initializer<T, Policy, tag>::initializer;
|
|---|
| 1039 |
|
|---|
| 1040 | } // namespace detail
|
|---|
| 1041 |
|
|---|
| 1042 | template <class T, class Policy>
|
|---|
| 1043 | inline typename tools::promote_args<T>::type erf(T z, const Policy& /* pol */)
|
|---|
| 1044 | {
|
|---|
| 1045 | typedef typename tools::promote_args<T>::type result_type;
|
|---|
| 1046 | typedef typename policies::evaluation<result_type, Policy>::type value_type;
|
|---|
| 1047 | typedef typename policies::precision<result_type, Policy>::type precision_type;
|
|---|
| 1048 | typedef typename policies::normalise<
|
|---|
| 1049 | Policy,
|
|---|
| 1050 | policies::promote_float<false>,
|
|---|
| 1051 | policies::promote_double<false>,
|
|---|
| 1052 | policies::discrete_quantile<>,
|
|---|
| 1053 | policies::assert_undefined<> >::type forwarding_policy;
|
|---|
| 1054 |
|
|---|
| 1055 | BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name());
|
|---|
| 1056 | BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name());
|
|---|
| 1057 | BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name());
|
|---|
| 1058 |
|
|---|
| 1059 | typedef typename mpl::if_<
|
|---|
| 1060 | mpl::less_equal<precision_type, mpl::int_<0> >,
|
|---|
| 1061 | mpl::int_<0>,
|
|---|
| 1062 | typename mpl::if_<
|
|---|
| 1063 | mpl::less_equal<precision_type, mpl::int_<53> >,
|
|---|
| 1064 | mpl::int_<53>, // double
|
|---|
| 1065 | typename mpl::if_<
|
|---|
| 1066 | mpl::less_equal<precision_type, mpl::int_<64> >,
|
|---|
| 1067 | mpl::int_<64>, // 80-bit long double
|
|---|
| 1068 | typename mpl::if_<
|
|---|
| 1069 | mpl::less_equal<precision_type, mpl::int_<113> >,
|
|---|
| 1070 | mpl::int_<113>, // 128-bit long double
|
|---|
| 1071 | mpl::int_<0> // too many bits, use generic version.
|
|---|
| 1072 | >::type
|
|---|
| 1073 | >::type
|
|---|
| 1074 | >::type
|
|---|
| 1075 | >::type tag_type;
|
|---|
| 1076 |
|
|---|
| 1077 | BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name());
|
|---|
| 1078 |
|
|---|
| 1079 | detail::erf_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); // Force constants to be initialized before main
|
|---|
| 1080 |
|
|---|
| 1081 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp(
|
|---|
| 1082 | static_cast<value_type>(z),
|
|---|
| 1083 | false,
|
|---|
| 1084 | forwarding_policy(),
|
|---|
| 1085 | tag_type()), "boost::math::erf<%1%>(%1%, %1%)");
|
|---|
| 1086 | }
|
|---|
| 1087 |
|
|---|
| 1088 | template <class T, class Policy>
|
|---|
| 1089 | inline typename tools::promote_args<T>::type erfc(T z, const Policy& /* pol */)
|
|---|
| 1090 | {
|
|---|
| 1091 | typedef typename tools::promote_args<T>::type result_type;
|
|---|
| 1092 | typedef typename policies::evaluation<result_type, Policy>::type value_type;
|
|---|
| 1093 | typedef typename policies::precision<result_type, Policy>::type precision_type;
|
|---|
| 1094 | typedef typename policies::normalise<
|
|---|
| 1095 | Policy,
|
|---|
| 1096 | policies::promote_float<false>,
|
|---|
| 1097 | policies::promote_double<false>,
|
|---|
| 1098 | policies::discrete_quantile<>,
|
|---|
| 1099 | policies::assert_undefined<> >::type forwarding_policy;
|
|---|
| 1100 |
|
|---|
| 1101 | BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name());
|
|---|
| 1102 | BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name());
|
|---|
| 1103 | BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name());
|
|---|
| 1104 |
|
|---|
| 1105 | typedef typename mpl::if_<
|
|---|
| 1106 | mpl::less_equal<precision_type, mpl::int_<0> >,
|
|---|
| 1107 | mpl::int_<0>,
|
|---|
| 1108 | typename mpl::if_<
|
|---|
| 1109 | mpl::less_equal<precision_type, mpl::int_<53> >,
|
|---|
| 1110 | mpl::int_<53>, // double
|
|---|
| 1111 | typename mpl::if_<
|
|---|
| 1112 | mpl::less_equal<precision_type, mpl::int_<64> >,
|
|---|
| 1113 | mpl::int_<64>, // 80-bit long double
|
|---|
| 1114 | typename mpl::if_<
|
|---|
| 1115 | mpl::less_equal<precision_type, mpl::int_<113> >,
|
|---|
| 1116 | mpl::int_<113>, // 128-bit long double
|
|---|
| 1117 | mpl::int_<0> // too many bits, use generic version.
|
|---|
| 1118 | >::type
|
|---|
| 1119 | >::type
|
|---|
| 1120 | >::type
|
|---|
| 1121 | >::type tag_type;
|
|---|
| 1122 |
|
|---|
| 1123 | BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name());
|
|---|
| 1124 |
|
|---|
| 1125 | detail::erf_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); // Force constants to be initialized before main
|
|---|
| 1126 |
|
|---|
| 1127 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp(
|
|---|
| 1128 | static_cast<value_type>(z),
|
|---|
| 1129 | true,
|
|---|
| 1130 | forwarding_policy(),
|
|---|
| 1131 | tag_type()), "boost::math::erfc<%1%>(%1%, %1%)");
|
|---|
| 1132 | }
|
|---|
| 1133 |
|
|---|
| 1134 | template <class T>
|
|---|
| 1135 | inline typename tools::promote_args<T>::type erf(T z)
|
|---|
| 1136 | {
|
|---|
| 1137 | return boost::math::erf(z, policies::policy<>());
|
|---|
| 1138 | }
|
|---|
| 1139 |
|
|---|
| 1140 | template <class T>
|
|---|
| 1141 | inline typename tools::promote_args<T>::type erfc(T z)
|
|---|
| 1142 | {
|
|---|
| 1143 | return boost::math::erfc(z, policies::policy<>());
|
|---|
| 1144 | }
|
|---|
| 1145 |
|
|---|
| 1146 | } // namespace math
|
|---|
| 1147 | } // namespace boost
|
|---|
| 1148 |
|
|---|
| 1149 | #include <boost/math/special_functions/detail/erf_inv.hpp>
|
|---|
| 1150 |
|
|---|
| 1151 | #endif // BOOST_MATH_SPECIAL_ERF_HPP
|
|---|
| 1152 |
|
|---|
| 1153 |
|
|---|
| 1154 |
|
|---|
| 1155 |
|
|---|