Version 20 (modified by 11 years ago) ( diff ) | ,
---|
WARNING: The contents of this page could be incomplete and outdated. Please help us to improve this page by modifying it directly or posting on the Boost mailing lists boost-AT-lists.boost.org or boost-users-AT-lists.boost.org with the prefix `[ReviewScheduleLibraries].
Depends on not yet accepted libraries
Boost.Fiber
- Author(s): Oliver Kowalke
- Version:
- State:
- Last upload:2011 January 31
- Inclusion date: ???
- Depends on: Boost.Atomic
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Needed
- Expected review date: ???
- Links: Boost Vault GitHub Sandbox
- Categories: Concurrent Programming
- Description: Boost.Fiber implements lightweight threads of execution - so called fibers
Unassigned review manager
Boost.Algorithm.Sorting
- Author(s): Steven Ross
- Version:
- State:
- Last upload: 2009 Jan 13
- Depends on:
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Needed
- Expected review date: ???
- Links: Bosst Vault
- Categories: Algorithm
- Description: The Sorting Algorithm Library provides a generic implementation of high-speed sorting algorithms that outperform those in the C++ standard in both average and worst case performance. These algorithms only work on random access iterators.
These algorithms are hybrids using both radix and comparison-based sorting, specialized to sorting common data types, such as integers, floats, and strings. These algorithms are encoded in a generic fashion and accept functors, enabling them to sort any object that can be processed like these basic data types.
Unlike many radix-based algorithms, the underlying Spreadsort algorithm is designed around worst-case performance, and performs better on chunky data (where it is not widely distributed), so that on real data it can perform substantially better than on random data. Conceptually, Spreadsort can sort any data for which an absolute ordering can be determined.
Boost.Conversion
- Author(s): Vicente J. Botet Escribá
- Version: 0.4
- State: Ready
- Last upload:2009 October 27
- Inclusion date: ???
- Depends on:
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Needed
- Expected review date: ???
- Links: Boost Vault Boost Sandbox Documentation
- Categories: Utilities
- Description: Generic explicit conversion between unrelated types.
The template function convert_to allows to convert a source type to a target type, using argument dependent lookup to select a specialized convert_to function if available. If no specialized convert_to function is available, boost::conversion::convert_to is used.
The generic convert_to function requires that the elements to be converted are assignable and copy constructible. It is implemented using the Target copy construction from a Source or the Source conversion operator Target - this is sometimes unavailable.
For standard types, we can not add a specialized convert_to function on the namespace std. The alternative to using argument dependent lookup in this situation is to provide a template specialization of boost::conversion::convert_to for every pair of standard types that requires a specialized convert_to.
Boost.Conversion provides:
- a generic convert_to function which can be specialized by the user to make explicit conversion between unrelated types.
- a generic assign_to function which can be specialized by the user to make explicit assignation between unrelated types.
- a generic mca/tie function returning a wrapper which replace assignments by a call to assign_to and conversion operators by a call convert_to.
- a generic convert_to_via function which convert a type From to another To using a temporary one Via.
- conversion between std::complex of explicitly convertible types.
- conversion between std::pair of explicitly convertible types.
- conversion between boost::optional of explicitly convertible types.
- conversion between boost::rational of explicitly convertible types.
- conversion between boost::interval of explicitly convertible types.
- conversion between boost::chrono::time_point and boost::ptime.
- conversion between boost::chrono::duration and boost::time_duration.
- conversion between boost::array of explicitly convertible types.
- conversion between Boost.Fusion sequences of explicitly convertible types.
Boost.Creasing
- Author(s): Grant Erickson
- Version:
- State:
- Last upload:
- Inclusion date: ???
- Depends on:
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Needed
- Expected review date: ???
- Links: Boost Vault
- Categories: Algorithms
- Description:
Boost.Endian
- Author(s): Beman Dawes
- Version:
- State:
- Last upload:2008 Nov 26
- Inclusion date: ???
- Depends on:
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Needed
- Expected review date: ???
- Links: Boost Sandbox
- Categories: Portability
- Description: Provides integer-like byte-holder binary types with explicit control over byte order, value type, size, and alignment. Typedefs provide easy-to-use names for common configurations.
These types provide portable byte-holders for integer data, independent of particular computer architectures. Use cases almost always involve I/O, either via files or network connections. Although portability is the primary motivation, these integer byte-holders may also be used to reduce memory use, file size, or network activity since they provide binary integer sizes not otherwise available.
Boost.QVM
- Author(s): Emil Dotchevski
- Version:
- State:
- Last upload: 2011 Feb 07
- Inclusion date: ???
- Depends on:
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Needed
- Expected review date: ???
- Links: Web Page
- Categories: Math And Numerics
- Description: Boost QVM defines a set of generic functions and operator overloads for working with quaternions, vectors and matrices of static size. The library also defines vector and matrix data types, however it allows users to introduce their own types by specializing the q_traits, v_traits and m_traits templates.
Boost.Pimpl
- Author(s): Vladimir Batov
- Version:
- State: Ready
- Last upload:
- Inclusion date: ???
- Depends on:
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Needed
- Expected review date: ???
- Links: Boost Vault Documentation
- Categories: Memory
- Description: The Pimpl idiom is a simple yet robust technique to minimize coupling via the separation of interface and implementation and then implementation hiding. This library provides a convenient yet flexible and generic deployment technique for the Pimpl idiom. It's seemingly complete and broadly applicable, yet minimal, simple and pleasant to use.
Boost.VariadicMacrosData
- Author(s): Edward Diener
- Version: 1.3
- State:
- Last upload: Feb 6, 2011
- Links: Boost Sandbox
- Categories: Preprocessor Metaprogramming
- Description: The variadic macro data library, or VMD for short, is a library of macros which provide important functionality for variadic macros as well as integrating variadic macros with the Boost preprocessor library ( Boost PP ). It integrates with Boost PP without changing the latter library in any way.
The functionality of the library may be summed up as:
- Providing the means to extract any single token from the comma-separated data which makes up variadic macro data, as well as to calculate the number of tokens.
- Convert variadic macro data to and from Boost PP data types.
- Enhance the tuple functionality of Boost PP by providing a means of calculating the size of a tuple as well as by providing equivalent macros to Boost PP tuple macros which do not require the size of the tuple to be explicitly passed.
Review Date pending
This section contains an index of the libraries with a pending date.
Boost.AutoBuffer
- Author(s): Thorsten Ottosen
- Version:
- State: Stable.
- Last upload: 2009 Jan 13
- Depends on:
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Robert Stewart
- Expected review date: ???
- Links: Download
- Categories: Data Structures
- Description: Boost.AutoBuffer provides a container for efficient dynamic, local buffers. Furthermore, the container may be used as an alternative to std::vector, offering greater flexibility and sometimes better performance.
Boost.Containers
- Author(s): Ion Gaztañaga
- Version:
- State: stable. Ready for review.
- Last upload:
- Inclusion date: 2009 Dec 14
- Depends on: Boost.Move
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: John Maddock
- Expected review date: ???
- Links: Boost Sandbox Download Documentation
- Categories: Container
- Description: Containers of Movable objects emulation using Boost.Move
Boost.Stopwatches
- Author(s): Vicente J. Botet Escribá
- Version: 0.1.0
- State: Not ready. Needs adaptation to new Chrono steady_clock interface.
- Last upload:2010 September 7
- Inclusion date: ???
- Depends on:
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Anthoni Williams
- Expected review date: ???
- Links: Documentation Download Boost Sandbox
- Categories: System
- Description: The Boost Ratio library provides:
- Stopwatches:
- stopwatch, capturing elapsed Clock times.
- stopwatch_accumulator, capturing cumulated elapsed Clock times.
- scoped helper classes allowing to pairwise start/stop operations, suspend/resume and resume/suspend a Stopwatch.
- Stopwatch reporters:
- stopwatch_reporter, convenient reporting of models of Stopwatch results.
- stopclock<Clock> shortcut of stopwatch_reporter<stopwatch<Clock>>.
- Support for wide characters (strings and ostreams).
- Stopwatches:
Review Scheduled
This section contains an index for libraries that are scheduled.
Boost.!Heaps
- Author(s): Tim Blechmann
- Version:
- State: Ready
- Last upload:
- Inclusion date: ???
- Depends on:
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Andrew Sutton
- Expected review date: May 30, 2011 - June 8, 2011
- Links: Download
- Categories: Containers
- Description:
Boost.LockFree
- Author(s): Tim Blechmann
- Version: v0.2
- State: Ready
- Last upload: 2009 November 24
- Inclusion date: ???
- Depends on: Boost.Atomic
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Hartmut Kaiser
- Expected review date: July 18, 2011 - July 27, 2011
- Links: Download Git Documentation
- Categories: Concurrent Programming Containers
- Description: Provides implementations of lock-free data structures. Lock-free data structures can be accessed by multiple threads without the necessity of blocking synchronization primitives such as guards. Lock-free data structures can be used in real-time systems, where blocking algorithms may lead to high worst-case execution times, to avoid priority inversion, or to increase the scalability for multi-processor machines.
The following data structures are provided:
- boost::lockfree::fifo, a lock-free fifo queue
- boost::lockfree::stack, a lock-free stack
- boost::lockfree::atomic_int, an atomic integer class
Review on going
Review results pending
Boost.Context
- Author(s): Oliver Kowalke
- Version: 0.6.1
- State: Stable
- Last upload:February 2, 2011
- Fulfill review criteria checked by : Vicente Botet At: February 2, 2011
- Pre-reviewed by : ??? people
- Review Manager: Vicente Botet
- Expected review date:March 21, 2011 - March 30, 2011
- Links: Boost Vault GitHub Sandbox
- Categories: Concurrent Programming
- Description: Boost.Context provides framework for user-context swapping/switching - has assembler for some platforms.
Accepted Libraries
Boost.GIL.IO
- Author(s): Christian Henning [mailto:chhenning-AT-gmail.com>
- Version:
- State: Stable
- Last upload: 2009 Jan 14
- Inclusion date: ???
- Depends on:
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Mateusz Loskot
- Review result: On going
- Links: svn repository
- Categories: Image Processing
- Description:IO extension for boost::gil which allows reading and writing of/in image formats ( tiff, jpeg, ... ).
Boost.Locale
- Author(s): Artyom Beilis
- Version:
- State:
- Last upload:
- Review Manager: Chad Nelson
- Expected review date:April 7, 2011 - April 16, 2011
- Links: Download
- Categories: String And Text Processing
- Description: Boost.Locale is a library that brings high quality localization facilities in C++ way.
It uses std::locale, and std::locale facets in order to provide localization in transparent and C++ aware way to user..
Boost.Log
- Author(s): Andrey Semashev `andrey.semashev__AT__gmail.com
- Version: RC3
- State: Accepted Provisionally
- Review Manager: Vladimir Prus
- Review dates: March 8, 2010 - March 17, 2010
- Accepted date: ???
- Expected completion date: ???
- Included in trunk date: ???
- Expected release date: ???
- Last upload: ???
- Categories: Input/Output
- Description: This library aims to make logging significantly easier for the application developer. It provides a wide range of out-of-box tools, along with public interfaces ready to be used to extend the library. The main goals of the library are:
- Simplicity. A small example code snippet should be enough to get the feel of the library and be ready to use its basic features.
- Extensibility. A user should be able to extend functionality of the library with regard to collecting and storing information into logs.
- Performance. The library should make as least performance impact on the user's application as possible.
Boost.TypeTraits.Extensions
- Author(s): Frédéric Bron
- Version: ???
- State: Quite Stable but not yet Ready for review
- Last upload: 2009 June 25
- Inclusion date: ???
- Depends on:
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Joel Falcou
- Expected review date: March 14, 2011 - March 18, 2011
- Links: Boost Vault Boost Sandbox
- Categories: Function Objects And Higher-order Programming
- Description: The purpose of the addition is to add type traits to detect if types T and U are comparable in the sense of <, <=, >, >=, == or != operators, i.e. if t<u has a sens when t is of type T and u of type U (same for <=, >, >=, ==, !=).
The following traits are added: is_equal_to_comparable<T,U> is_greater_comparable<T,U> is_greater_equal_comparable<T,U> is_less_comparable<T,U> is_less_equal_comparable<T,U> is_not_equal_to_comparable<T,U>
The names are based on the corresponding names of the standard template library (<functional> header, section 20.3.3 of the standard).
The code has the following properties: * returns true if t<u is meaningful and returns a value convertible to bool * returns false if t<u is meaningless. * fails with compile time error if t<u is meaningful and returns void (a possibility to avoid compile time error would be to return true with an operator, trick but this has little sens as returning false would be better)
Included on Trunk
Boost.Chrono
- Author(s): Howard Hinnant, Beman Dawes and Vicente J. Botet Escribá
- Version: 0.6
- State: Stable
- Inclusion date: 2009 Dec 14
- Last upload:2010 January 17
- Depends on: Ratio, TypeTraits, ...
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Anthony Williams
- Review Result: Pending
- Links: Documentation Download Boost Sandbox
- Categories: System
- Description: The Boost Chrono library provides:
- The C++0x Standard Library's common_type.
- The C++0x Standard Library's compile-time rational arithmetic.
- The C++0x Standard Library's time utilities, including:
- Class template duration
- Class template time_point
- Clocks:
- system_clock
- monotonic_clock
- high_resolution_clock
- typeof registration for classes duration and time_point
- Process clocks:
- process_real_CPU_clocks, capturing real-CPU times.
- process_user_CPU_clocks, capturing user-CPU times.
- process_system_CPU_clocks, capturing system-CPU times.
- process_cpu_clock, tuple-like class capturing at once real, user-CPU, and system-CPU times.
- Thread clocks
Boost.Geometry (aka GGL)
- Author(s): Barend Gehrels, Bruno Lalande, Mateusz Loskot
- Version:
- State: Accepted
- Review Manager: Hartmut Kaiser
- Review dates: November 5, 2009 - November 22, 2009
- Accepted date: ???
- Expected completion date: ???
- Included in trunk date: ???
- Expected release date: ???
- Last upload: 2010 February
- Description: Generic Geometry Library (GGL), this was the name before acceptance into Boost
- Links: Web site Web site and Wiki Boost Sandbox Download
- Categories: Math And Numerics
Boost.Move
- Author(s): Ion Gaztañaga
- Version:
- State: Review Ongoing
- Last upload:
- Inclusion date: ???
- Depends on:
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: OvermindDL1
- Review Result: Pending
- Links: Boost Sandbox [http://www.drivehq.com/web/igaztanaga/libs/move_semantics/ Documentation] Download
- Categories: Generic Programming Language Features Emulation
- Description: Move semantics emulation library
Boost.Ratio
- Author(s): Howard Hinnant, Beman Dawes and Vicente J. Botet Escribá
- Version: 0.2.0
- State: Stable
- Last upload:2010 September 22
- Links: Documentation PDF Download Boost Sandbox
- Categories: Math And Numerics
- Description: The Boost Ratio library provides:
- The C++0x Standard Library's compile-time rational arithmetic.
The Boost.Ratio library provides:
- A class template, ratio, for specifying compile time rational constants such as 1/3 of a nanosecond or the number of inches per meter. ratio represents a compile time ratio of compile time constants with support for compile time arithmetic with overflow and division by zero protection
- It provides a textual representation of boost::ratio<N, D> in the form of a std::basic_string. Other types such as boost::duration can use these strings to aid in their I/O.
Rejected or withdraw
Boost.Convert
- Author(s): Vladimir Batov
- Version: 0.36
- State: Ready
- Last upload: 2009, Mars 02
- Inclusion date: ???
- Depends on:
- Fulfill review criteria checked by : ??? At:
- Missing criteria
- C1
- Missing criteria
- Pre-reviewed by : ??? people
- Review Manager: Edward Diener
- Expected review date: April 23, 2011 - May 2, 2011-
- Links: Boost Vault
- Categories: String And Text Processing
- Description: Extensible framework for a uniform approach to type-to-type conversions in general. It builds on the lexical_cast past experience, offers the already familiar conversion functionality and more:
- simple and better/safe conversion-failure check;
- throwing and non throwing conversion-failure behavior;
- support for the default value to be returned when conversion fails;
- formatting support based on the standard I/O Streams and the standard (or user-defined) manipulators (like std::hex, std::scientific, etc.);
- locale support;
- support for boost::range-compliant char and wchar_t-based string containers (std::string, std::wstring, char const*, wchar_t const*, char array[], std::vector<char>, etc.);
- no DefaultConstructibility requirement for the Target type;
- room to grow.
Boost.Process
- Author(s): Boris Schaeling, Ilya Sokolov, Felipe Tanus, Julio M. Merino Vidal
- Version: v0.4
- State: On going
- Last upload: October 08, 2010
- Review Manager: Marshall Clow
- Expected review date: February 7. 2011 - February 16, 2011
- Links: Boost Sandbox Download Documentation
- Categories: System
- Description: Boost.Process is a library to manage system processes. It can be used to:
- create child processes
- run shell commands
- setup environment variables for child processes
- setup standard streams for child processes (and other streams on POSIX platforms)
- communicate with child processes through standard streams (synchronously or asynchronously)
- wait for processes to exit (synchronously or asynchronously)
- terminate processes
Boost.XInt
- Author(s): Chad Nelson
- Version: 0.6
- State:
- Last upload: 2010, Jun 19
- Review Manager: Vladimir Prus
- Expected review date: March 2, 2011 - March 12, 2011
- Links: Boost Sandbox Boost Documentation
- Categories: Math And Numerics
- Description: It's a C++ library that lets your program handle much, much larger integer numbers than the built-in int, long, or even long long types, and handle them using the same syntax that C and C++ use for the built-in integer types.
The maximum size of the integer is limited only by the memory available to store it. In practice that's millions of hexadecimal digits, so it's effectively infinite.